Volume-10, No. 1 Feb.-2023, pp. Eng.35-43

Medicinal and Nutritional properties of Miracle Tree (MORINGA OLEIFERA): A review

Dr. Rakesh Kumar, Assistant Professor, Department of Botany Vijay Singh Pathik Govt. (P.G.) College, Kairana (Shamli) U.P. India

Abstract

Moringa oleifera is a widely distributed plant of the Moringaceae family. Nearly, every portion of this tree has extraordinary qualities for food, medicine, or other industrial uses that's why this plant is known as miracle tree. This study is to gather an overview of global research, pharmacological activity, nutritional and medicinal properties of M. oleifera. Moringa species have long been recognized for their antioxidant, anti-inflammatory, anticancer, and antihyperglycaemic properties. Most of their biological action is due to their high presence of flavonoids, glucosides, and glucosinolates. Furthermore, after analyzing the current M. oleifera research, it can be concluded that M. oleifera is a plant of highly nutritional and medicinal value. This plant should be planted in area where malnutrition problem is common.

Keywords: Moringa oleifera, Medicinal uses, Pharmacological activity, Phytochemistry, Nutritional value.

Introduction:

Moringa oleifera is the most widely cultivated species in the genus Moringa, the only genus in the plant family Moringaceae. Common names include Moringa, Sahjan, drumstick tree (from the long, slender, triangular seed-pods), horseradish tree (from taste of the roots. which the resembles horseradish). and ben oil tree or benzoil tree (42).

M. oleifera is a fast growing, drought resistant tree, native to tropical and subtropical regions of South Asia. As per reports available there are about 33 species of Moringaceae family. Moringa oleifera is one of the most common species of Moringaceae family. Worldwide distributed, common and well known thirteen species of Moringa are namely: M. arborea, M. borziana, M. concanensis, M. drouhardi, M. hildebrandtii, M. longituba, M. oleifera, M. ovalifolia, M. peregrina, M. pygmaea, M. rivae, M. ruspoliana and M. stenopetala. Plant is widely cultivated for its young seeds, pods and leaves used as vegetables and for traditional herbal medicine (31, 12, 23).

Description:

M. oleifera is a fast-growing, deciduous tree that can reach a height of 10–12 m (32– 40 ft) and trunk diameter of 45 cm (1.5 ft). The bark has a whitish-grey colour and is surrounded by thick cork. Young shoots have purplish or greenish-white, hairy bark. The tree has an open crown of drooping, fragile branches and the leaves build up feathery foliage of tripinnate leaves.

The flowers are fragrant and hermaphroditic, surrounded by five unequal, thinly veined, yellowish-white petals. The flowers are about 1.0-1.5 cm (1/2") long and 2.0 cm (3/4") broad. They grow on slender, hairy stalks in spreading or drooping flower clusters which have a length of 10-25 cm.

Flowering begins within the first six months after planting. In seasonally cool regions, flowering only occurs once a year between March and June. In more constant seasonal temperatures and with constant rainfall, flowering can happen twice or even all yearround.

The fruit is a hanging, three-sided brown capsule of 20–45 cm size which holds dark brown, globular seeds with a diameter around 1 cm. The seeds have three whitish papery wings and are dispersed by wind and water (15, 37).

Cultivation:

M. oleifera can be grown in any tropical and subtropical regions of the world with a temperature around 25-35 °C. It requires sandy or loamy soil with a slightly acidic to slightly alkaline pH and a net rainfall of 250-3000 mm. The direct seeding method is followed as it has high germination rates. Since Moringa seeds are expected to germinate within 5-12 days after seeding and can be implanted at a depth of 2 cm in the soil. Moringa can also be propagated using containers. The saplings are placed in plastic bags containing sandy or loamy soil. After it grows to about 30 cm, it can be transplanted. However, utmost care has to be taken while transplanting as the tap roots are tender and tend to get affected. The tree can also be cultivated from cuttings with 1 m length and 4-5 cm in diameter, but these plants may not have a good deep root system. Such plants tend to be sensitive to drought and winds. For commercial purposes large scale intensive and semiintensive plantation of Moringa may be followed. In commercial cultivation. spacing is important as it helps in plant management and harvest.

Nutritional properties:

Every part of M. oleifera is a storehouse of important nutrients and anti-nutrients. The leaves of M. oleifera are rich in minerals like calcium, potassium, zinc, magnesium, iron and copper. Vitamins like beta-carotene of vitamin A, vitamin B such as folic acid, pyridoxine and nicotinic acid, vitamin C, D and E also present in M. oleifera. Phytochemicals such as tannins, sterols, terpenoids, flavonoids, saponins, alkaloids and reducing anthraquinones, sugar present along with anti-cancerous agents like glucosinolates, isothiocyanates, glycoside compounds and glycerol-1-9octadecanoate. Moringa leaves also have a low calorific value and can be used in the diet of the obese. The pods are fibrous and are valuable to treat digestive problems and colon cancer. Research shows that immature pods contain around 46.78% fiber and around 20.66% protein content. Pods have 30% of amino acid content, the leaves have 44% and flowers have 31%. The immature pods and flowers showed similar amounts of palmitic, linolenic, linoleic and oleic acids (7, 35).

Moringa has lot of minerals that are for growth and essential development among which, calcium is considered as one of the important minerals for human growth. While 8 ounces of milk can provide 300-400 mg, Moringa leaves can provide 1000 mg and Moringa powder can provide more than 4000 mg. Moringa powder can be used as a substitute for iron tablets, hence as a treatment for anemia. Beef has only 2 mg of iron while Moringa leaf powder has 28 mg of iron. It has been reported that Moringa contains more iron than spinach. A good dietary intake of zinc is essential for proper growth of sperm cells and is also necessary for the synthesis of DNA and RNA. M. oleifera leaves show around 25.5-31.03 mg of zinc/kg, which is the daily requirement of zinc in the diet (43, 13). A complete list of nutrients available in different parts of plant are shown in Table 1 & 2.

Benefits/uses of Moringa:

There are many uses of Moringa tree and these will all be: medicines, Human food, Water purification, Animal fodder, Alley cropping, Fertilizer, Living fence, Living fence, Domestic cleaning agent, Fuel wood and other uses. Moringa increased physical energy - Tune your body up with naturally occurring nutrients to make your energy last longer. Numerous research reports reveal that, parts of Moringa plant can be used in different techniques. Moringa oleifera seed

and leaves is advantageous source of nutrients, medicines, clean dirty water and it can be used for alley cropping; because, it has lots of leafy material.

Nutrients	Fresh leaves	Dry leaves	Leaf powder	Seed	Pods
Calories (cal)	92	329	205	_	26
Protein (g)	6.7	29.4	27.1	35.97 ± 0.19	2.5
Fat (g)	1.7	5.2	2.3	38.67 ± 0.03	0.1
Carbohydrate (g)	12.5	41.2	38.2	8.67 ± 0.12	3.7
Fibre (g)	0.9	12.5	19.2	2.87 ± 0.03	4.8
Vitamin B1 (mg)	0.06	2.02	2.64	0.05	0.05
Vitamin B2 (mg)	0.05	21.3	20.5	0.06	0.07
Vitamin B3 (mg)	0.8	7.6	8.2	0.2	0.2
Vitamin C (mg)	220	15.8	17.3	4.5 ± 0.17	120
Vitamin E (mg)	448	10.8	113	751.67 ± 4.41	-
Calcium (mg)	440	2185	2003	45	30
Magnesium (mg)	42	448	368	635 ± 8.66	24
Phosphorus (mg)	70	252	204	75	110
Potassium (mg)	259	1236	1324	-	259
Copper (mg)	0.07	0.49	0.57	5.20 ± 0.15	3.1
Iron (mg)	0.85	25.6	28.2	_	5.3
Sulphur (mg)	_	_	870	0.05	137

Table 1	The	nutrient	compositions	of leaves	leaf	nowder	seeds and	node
Table 1.	THE	nument	compositions	of leaves,	, lear	powaer,	seeus anu	pous.

*All values are in 100 g per plant material.

The uses Moringa oleifera are well documented as nutritional, industrial, medicinal, and of agricultural advantage. Moringa oleifera has great potential for prevention of different diseases like nutrient deficiency, cancer, and anemia as well as for dirty water purification. Moringa powder contains sufficient amount of vitamins, nutrients and chemicals in it. This makes the tree a medicine for many different diseases. Moringa oleifera has also promoted by World Health Organization (WHO) as an alternative to imported food source to treat malnutrition.

Plant	Nutritional uses/benefits	Phytochemistry	References
parts			
Leaves	(i). Moringa leaves are very rich	Vitamin A 6.780mg – Carrot :	4, 3, 11, 18,
	source of vitamin A, C,	1.890 mg; vitamin C 220 mg	21, 39, 38,
	Calcium, Potassium, protein and	– Orange: 30 mg; calcium 440	40, 48
	essential elements in	mg – Cow's milk: 120 mg;	
	comparison to locally available	potassium 259 mg – Banana:	
	in market viz. Carrot, orange,	88 mg; protein 6.6 mg –	

-

	cow milk, banana etc. The	Cow's milk: 3.2 mg; 14	
	leaves may be supplemented as	macroelements and 21	
	essential food and Alternative of	microelements (total 35	
	tea leaves. The leaves can be	elements).	
	serve to check malnutrition in		
	the poor's. It is a nutraceutical		
	and panacea for various diseases		
	having 35 elements.	During hand washing the	
		mechanical friction by the dry	
	(ii). Leaf powder used as hand	leaf powder reduces the	46
	washing product-hand hygiene	bacterial effect in comparison	
	to reduce gastrointestinal and respiratory illness.	to nonmedicated liquid soap.	
		Having higher percentage of	
		vitamins, essential elements	
		and proteins. Leaves having	
	(iii). Leaves tender twigs and	iron, minarals, vitamins and	21, 40
	immature pods used as fodder	proteins.	
	for cattle's to increase milk.		
	(iv). Pregnant woman consumed		21, 40
	leaves and flowers to increase		
	milk for infants.		
	(v). Leaf powder used as		21 40
	biocontrol in crops, as fertilizers		21, 40
Stom	Stom pulp used in picking	Having collophone	40.48
Stem	sticks and nowspaper making	Having cenophane	40, 48
	and textile industries Stem		
	corky bark yield Fibbers used in		
	making mats paper cordages		
	etc.		
Pods	Immature pods cooked as	Having higher percentage of	40, 48
	vegetable or pickled, having	vitamins essential elements,	· ·
	high nutritional- and medicinal	glycosides etc.	
	values.		

-

Seeds	(1). Seed powder paste used as water purifier to improve the	polyelectrolyte of short chain	34	
	quality of drinking water by	and low, molecular weight.		
	absorbing the heavy metals viz.	Heavy metals having higher		
	Cadmium, Copper, Chromium,	charges.		
	Lead and Zink. Which are	C		
	highly toxic to human being.			
	(ii). The seeds can be used as	Seeds oil locally known as	36	
	nutritional supplements and for	"ben oil" "Drumsticks"		
	industrial and agriculture	similar to olive oil and is rich		
	purpose. It is also being used in	in Palmetic, stearic, Behenic		
	perfume industries, cosmetic,	and oleic acids. The oil is		
	lubricate, soap as antioxidant	clear, odourless and resists		
	activity oil being used as body	rancidity, oil possesses 75%		
	cream. It can also used as	oleic acid.		
	vegetable in daily consumption.			
Medicinal p	properties of Moringa:	of M. oleifera can cure s	treptozotocin-	
In this	section, medicinal uses	induced Type 1 diabetes and	also insulin	
of Moringa	are reviewed. Different studies	resistant Type 2 diabetes in	rats (10). In	
shown th	at, all parts of Moringa	another study, the researchers fed the STZ-		
oleifera (lea	ves, fruits, immature pods, and	induced diabetes rats with	Moringa seed	
flowers) are	incorporated into the traditional	powder and noticed that the	Tasting blood	
tropical cour	nans in many tropical and sub-	were treated with about 500 n	of Moringa	
M oleifera	is often referred as a panacea	seed powder/kg body y	veight the	
and can be	used to cure more than 300	antioxidant enzymes increased	in the serum	
diseases. N	foringa has long been used	This shows that the antioxidants present in		
in herbal me	edicine by Indians and Africans.	Moringa can bring down	the reactive	
The presence	e of phytochemicals makes it a	oxygen species (ROS) caused	in the Beta-	
good medic	inal agent. In this section, the	cells due to the Strep	tozotocin or	
effect of Me	oringa on diseases like diabetes	streptozocin (STZ) induction	on (28). STZ	
and cancer e	etc. are reviewed.	causes ATP dephosphoryla	ation reactions	
Anti-diabet	ic properties	and helps xanthine oxidase in	the formation	
Moringa has	s been shown to cure both Type	of superoxides and reactive o	xygen species	
1 and Type	2 diabetes. Type 1 diabetes is	(ROS) in Beta cells (49). In h	nyperglycemic	
one where the patients suffer from non- patients, the beta cells get destruct			et destructed.	
production	of insulin, which is a hormone	Therefore, high glucose	enters the	
that maintai	ns the blood glucose level at the	mitochondria and releases rea	active oxygen	
required nor	mal value. Type 2 diabetes is	species. Since beta cells have l	ow number of	
one associat	ed with insulin resistance. Type	antioxidants, this in turn cause	es apoptosis of	
2 diabetes i	which fails to some always	the beta cells (20, 41). This f	educes insulin	
levels hon	ce reduces the signaling to	turn diabetes mollitu	c = T v p 2	
insulin reg	ulting in high blood glucose	The flavonoids like quercitin a	nd phenolice	
levels (8) S	everal studies have shown that	have been attributed as ant	ioxidants that	
Moringa car	act as an anti-diabetic agent. A	bring about a scavenging effe	ct on ROS. It	
study has s	hown that the aqueous extracts	can be hypothesized that the	e flavonoids in	
J 0.	1.			

Moringa scavenge the ROS released from mitochondria, thereby protecting the beta cells and in turn keeping hyperglycemia under control (19, 2).

Anti-cancer properties

Cancer is a common disease and one in seven deaths is attributed due to improper medication. Around 2.4 million cases are prevalent in India, while there are no specific reasons for cancer to develop. Several factors like smoking, lack of exercise and radiation exposure can lead to the disease (32). Cancer treatments like surgery, chemotherapy and radiation are expensive and have side effects. M. oleifera can be used as an anticancer agent as it is natural, reliable and safe, at established concentrations. Studies have shown that Moringa can be used as an antineoproliferative agent, thereby inhibiting the growth of cancer cells. Soluble and solvent extracts of leaves have been proven effective as anticancer agents. Furthermore, research papers suggest that the antiproliferative effect of cancer may be due to its ability to induce reactive oxygen species in the cancer cells. Researches show that the reactive oxygen species induced in the cells leads to apoptosis. This is further proved by the up regulation of caspase 3 and caspase 9, which are part of the apoptotic pathway (45, 17, 25). Moreover, the ROS production by Moringa is specific and targets only cancer cells, making it an ideal anticancer agent. Tiloke et al. (45) also showed that the extracts increased the expression of glutathione-S-transferase, which inhibits the express of antioxidants. Anticancer agents targeting cancer using ROS induction are common, but these substances should also be able to attack the antioxidant enzymes (26). However, Moringa leaf extracts have shown to be antioxidants been and anticancer agents which induce ROS. The exact behavior of the two contrary attributes of the leaves is yet to be explored. The compounds of the leaves that are held responsible for the anticancer activities are glucosinolates, niazimicin and benzyl isothiocyanate (14). Benzyl isothiocyanate has been shown to be linked with cancer. Research shows that BITC causes intracellular ROS, which leads to cell death. This could be one of the reasons for Moringa to be a good anticancer agent (33, 29, 24).

Other diseases

Moringa can be used as potent a neuroprotectant. Cerebral ischemia is caused due to obstruction of blood flow to the brain. This leads to reperfusion and lipid peroxidation, which in turn results in reactive oxygen species. Moringa with its antioxidants can reduce the reactive oxygen species, thereby protecting the brain (5, 22). M. oleifera is used to treat dementia, as it has been shown to be a promoter of spatial memory. The leaf extracts have shown to decrease the acetylcholine esterase activity, thereby improving cholinergic function and memory (44). Adevemi et al. (1) showed that Moringa in diet of rats, can increase protein content and decrease levels of urea and creatinine in blood, preventing renal dysfunction. Moringa decreased acidity in gastric ulcers by a percentage of 86.15% and 85.13% at doses of 500 mg and 350 mg, respectively and therefore can be used as an antiulcer agent (9). Moringa is prescribed by herbal practitioners for patients with AIDS. Moringa is suggested to be included in the diet, with the view of boosting the immune system of HIV positive individuals. However, more research is essential to validate the effect of Moringa on anti-retroviral drugs (30). The hydroalcoholic extract of Moringa flowers reduced the levels of rheumatoid factor, TNF-alpha and IL-1 in arthritic rats. This proves that Moringa can be a potent therapy for arthritis (27). Microbial diseases are widespread and there is a need for antimicrobial agents, M. oleifera has been proven as a good antimicrobial agent. A study by Viera et al. (47) has shown that the extracts of M. oleifera can act against bacteria

like Bacillus

subtilis, Staphylococcus aureus and Vibrio cholera. The antibacterial effects of the seeds were accounted for by the presence of pterygospermin, moringine and benzyl isothiocyanate (16).

Conclusion:

Moringa oleifera tree is indeed a miracle tree with enormous potentials yet to be fully **Deferences**

References

explored in medicinal and food application. All parts of Moringa oleifera tree is said to have useful assets that can help humankind. This plant can be useful in eradicating the problem of malnutrition. Further, it may be helpful in treatment of various diseases. Government is required to prioritize this plant species for large scale plantation.

- 1. Adeyemi, O.S. and Elebiyo T.C. (2014). Moringa oleifera supplemented diets prevented nickel-induced nephrotoxicity in Wistar rats. J. Nutr. Metab., pp. 1-8
- 2. Al-Malki, A.L. and El Rabey H.A. (2015). The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. Biomed. Res. Int., pp. 1-13.
- 3. Anwar, Farooq, Latif, Sajid, Ashraf, Muhammad and Gilani, Hassan, A. (2007). Moringa oleifera: A Food Plant with Multiple Medicinal Uses, Phytother. Res., 21: 17–25.
- Asiedu-Gyekye, I.J., Frimpong-Manso, S., Awortwe, C., Antwi, D.A. and Nyarko, A.K. (2014). Micro- and Macroelemental Composition and Safety Evaluation of the Nutraceutical Moringa oleifera Leaves, Journal of Toxicology, 1-13.
- Baker, K., Marcus, C.B., Huffman, K., Kruk, H., Malfroy, B., & Doctrow, S.R. (1998). Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. J. Pharmacol. Exp. Ther., 284, pp. 215-221.
- 6. Barminas, J.T., Charles, M. & Emmanuel, D. (1998). Mineral composition of nonconventional leafy vegetables. Plant Foods Hum. Nutr., 53, pp. 29-36.
- Berkovich, L., Earon, G., Ron, I., Rimmon, A., Vexler, A. & Lev-Ari, S. (2013). Moringa oleifera aqueous leaf extract down-regulates nuclear factor-kappa B and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. BMC Complement. Altern. Med., 13, pp. 212-219.
- 8. Cerf. M.E. (2013). Beta cell dysfunction and insulin resistance. Front. Endocrinol., 4, pp. 1-12.
- 9. Choudhary, M.K., Bodakhe, S.H. & Gupta, S.K. (2013). Assessment of the antiulcer potential of Moringa oleifera root-bark extract in rats. JAMS J. Acupunct. Meridian Stud., 6, pp. 214-220.
- Divi, S.M., Bellamkonda, R. & Dasireddy, S.K. (2012). Evaluation of antidiabetic and antihyperlipedemic potential of aqueous extract of Moringa oleifera in fructose fed insulin resistant and STZ induced diabetic wistar rats: a comparative study. Asian J. Pharm. Clin. Res., 5, pp. 67-72.
- Fozia, F., Rai, M., Tiwari, A., Khan, A. A. and Farooq, S. (2012). Medicinal properties of Moringa oleifera: An overview of promising healer, Journal of Medicinal Plants Research, 6(27): 4368-4374.
- 12. Fuglie, L. J. (1999). The Miracle Tree: Moringa oleifera: Natural Nutrition for the Tropics. Church World Service, Dakar1, 68.
- 13. Fuglie, L.J. (2005). The Moringa Tree: A local solution to malnutrition Church World Service in Senegal.
- 14. Hermawan, A., Nur, K.A., Sarmoko, Dewi, D., Putri, P. & Meiyanto, E. (2012). Ethanolic extract of Moringa oleifera increased cytotoxic effect of doxorubicin on HeLa cancer cells. J. Nat. Remedies, 12, pp. 108-114.

- 15. Hsu, R., Midcap, S. and de Witte, L.A. (2006). Moringa oleifera: Medicinal and socioeconomic uses. In: International course on economic botany organized by National Herbarium Leiden, The Netherlands. Pp. 1-18.
- 16. Jahn, S.A., Musnad, H.A. & Burgstaller, H. (1986). The tree that purifies water: cultivating multipurpose Moringaceae in the Sudan. Unasylva, 38, pp. 23-28.
- 17. Jung, I. L. (2014). Soluble extract from Moringa oleifera leaves with a new anticancer activity. PLOS ONE, 9, pp. 1-10.
- 18. Kamal, M. (2008). Moringa oleifera Lam. The miracle tree. http://www./pharmainfo.net/review/Moringa oleifera Lam. miracle tree.
- 19. Kamalakkannan, N. & Prince, P.S.M. (2006). Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin. Pharmacol. Toxicol., 98, pp. 97-103.
- Kaneto, H., Kajimoto, Y., Miyagawa, J., Matsuoka, T., Fujitani, Y., Umayahara, Y., Hanafusa, T., Matsuzawa, Y., Yamasaki, Y. & Hori. M. (1999). Beneficial effects of antioxidants in diabetes: possible protection of pancreatic β-cells against glucose toxicity Diabetes, 48, pp. 2398-2406.
- 21. Khawaja, T. M., Mugal, T. and Ul Haq, I. (2010). Moringa oleifera: a natural gift-A review, J. Pharm. Sci. and Res., 2(11): 775-781.
- Kirisattayakul, W., Wattanathorn, J., Tong-Un, T., Muchimapura, S., Wannanon, P. & Jittiwat. J. (2013). Cerebroprotective effect of Moringa oleifera against focal ischemic stroke induced by middle cerebral artery occlusion. Oxid. Med. Cell. Longev., pp. 10-13.
- 23. Koul, B. and Chase, N. (2015). Moringa oleifera Lam: Panacea to several maladies. Journal of Chemical and Pharmaceutical Research, 7(6): 687-707.
- 24. Lee, Y.J. & Shacter. E. (1999). Oxidative stress inhibits apoptosis in human lymphoma cells. J. Biol. Chem., 274, pp. 19792-19798.
- Leelawat, S. & Leelawat. K. (2014). Moringa olefiera extracts induce cholangiocarcinoma cell apoptosis by induction of reactive oxygen species production. Int. J. Pharmacogn. Phytochem. Res., 6, pp. 183-189.
- 26. Liou, G.Y. & Storz. P. (2010). Reactive oxygen species in cancer. Free Radic. Res., 44, pp. 479-496.
- Mahajan, G.S. & Mehta, A.A. (2009). Anti-arthritic activity of hydroalcoholic extract of flowers of Moringa oleifera lam. in Wistar rats. J. Herbs Spices Med. Plants, 15, pp. 149-163.
- 28. Mbikay. M. (2012). Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: a review. Front. Pharmacol., 3, pp. 1-12.
- 29. Miyoshi, N., Uchida, K., Osawa, T. & Nakamura Y. (2004). A link between benzyl isothiocyanate-induced cell cycle arrest and apoptosis: involvement of mitogen-activated protein kinases in the Bcl-2 phosphorylation. Cancer Res., 64, pp. 2134-2142.
- 30. Monera, T.G. & Maponga, C.C. (2012). Prevalence and patterns of Moringa oleifera use among HIV positive patients in Zimbabwe: a cross-sectional survey. J. Public Health Africa, 3, pp. 6-8.
- Nadkarni, A. K. (1976). Indian Materia Medica. Popular Prakashan: Bombay, pp. 810– 816.
- 32. Nair, M.K., Varghese, C. & Swaminathan, R. (2005). Cancer current scenario, intervention strategies and projections for 2015. Burd. Dis. India, pp. 219-225.
- Nakamura, Y., Kawakami, M., Yoshihiro, A., Miyoshi, N., Ohigashi, H. & Kawai, K. (2002). Involvement of the mitochondrial death pathway in chemo preventive benzyl isothiocyanate-induced apoptosis. J. Biol. Chem., 277, pp. 8492-8499.

- 34. Nand Vikashni, Maata, Matakite, Koshy, Kanayathu and Sotheeswaran, Subramanium (2012). Water purification using Moringa oleifera and other locally available seeds in fiji for heavy metal removal, International Journal of Applied Science and Technology, 2(5): 125-129.
- 35. Oduro, I., Ellis, W.O. & Owusu, D. (2008). Nutritional potential of two leafy vegetables: Moringa oleifera and Ipomoea batatas leaves. Sci. Res. Essays, 3, pp. 57-60.
- 36. Ojiako E.N. and Okeke, C.C. (2013). Determination of antioxidant of Moringa oleifera seed oil and its use in the production of a body cream, Asian J. Plant Sci. Res., 3(3): 1-4.
- 37. Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. and Anthony, S. (2009). Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya.
- 38. Paliwal, R., Sharma, V. and Pracheta (2011a). A review of Horse Radish Tree (Moringa oleifera): A multiplepurpose tree with high economic and commercial importance, Assian Journal of Biotechnology (Knowledgia Review Malasia), 1-14.
- 39. Paliwal, R., Sharma, V., Pracheta and Sharma, S.H. (2011b). Hepatoprotective and antioxidant potential of Moringa oleifera Lam. pods against DMBA-induced hepatocarcinogenesis in male mice, Int. J. Drug Dev. and Res., 3(2): 128-138.
- 40. Parrotta, John. (2009). A. Moringa oleifera Lam. Enzyklopadie der Holzgewachse, Handbuch and atlas der Dendrologie, 1-8.
- 41. Prentki, M., Nolan, C.J. (2006). Islet β cell failure in type 2 diabetes. J. Clin. Invest., 116, pp. 1802-1812.
- 42. Ramachandran, C., Peter, K.V. and Gopalakrishnan, P. K. (1980). Drumstick (Moringa oleifera): a multipurpose Indian vegetable. Econ Bot 34, 276–283.
- Sánchez-Machado, D.I., Núñez-Gastélum, J.A., Reyes-Moreno, C., Ramírez-Wong, B. & López-Cervantes, J. (2010). Nutritional quality of edible parts of Moringa oleifera. Food Anal. Methods, 3, pp. 175-180.
- 44. Sutalangka, C., Wattanathorn, J., Muchimapura, S. & Thukham-mee, W. (2013). Moringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia. Oxid. Med. Cell. Longev., pp. 1-9.
- 45. Tiloke, C. A., Phulukdaree, A.A. & Chuturgoon (2013). The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells. BMC Complement. Altern. Med., 13, pp. 226-233.
- 46. United Nations World Food Programme. Interactive Hunger Map 2004, Dec.,
- 47. Viera, G.H.F., Mourão, J.A., Ângelo, Â.M., Costa, R.A. & Vieira. R.H.S.D.F. (2010). Antibacterial effect (in vitro) of Moringa oleifera and Annona muricata against Gram positive and Gram negative bacteria. Rev. Inst. Med. Trop. Sao Paulo, 52 (2010), pp. 129-132.
- 48. Wealth of Inda: A dictionary of Indian Raw materiala and Industrial products. Vol. VI: L-M. Publication and Information Directorate, CSIR, New Delhi, 425-431 (2001).
- 49. Wright, E., Scism-Bacon, J.L. & Glass. L.C. (2006). Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int. J. Clin. Pract., 60, pp. 308-314.